翻訳と辞書 |
Linear Lie algebra : ウィキペディア英語版 | Linear Lie algebra In algebra, a linear Lie algebra is a subalgebra of the Lie algebra consisting of endomorphisms of a vector space ''V''. In other words, a linear Lie algebra is the image of a Lie algebra representation. Any Lie algebra is a linear Lie algebra in the sense that there is always a faithful representation of (in fact, on a finite-dimensional vector space by Ado's theorem if is itself finite-dimensional.) Let ''V'' be a finite-dimensional vector space over a field of characteristic zero and a subalgebra of . Then ''V'' is semisimple as a module over if and only if (i) it is a direct sum of the center and a semisimple ideal and (ii) the elements of the center are diagonalizable (over some extension field). == Notes ==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Linear Lie algebra」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|